### Oxymercuration of Homoallylic Alcohol-Derived Hemiacetals: Diastereoselective Synthesis of Protected 1,3-Diols

Stella T. Sarraf and James L. Leighton\*

Department of Chemistry, Columbia University, New York, New York, 10027

#### Supporting Information

**General Information.** All reactions were conducted under an atmosphere of nitrogen in flame-dried glassware with magnetic stirring. Hg(OAc)<sub>2</sub> (98+%) was purchased from Aldrich and used as received. Propionaldehyde was distilled prior to use. Infrared spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR spectrometer. <sup>1</sup>H NMR spectra were recorded on a Varian VXR-200 (200 MHz) spectrometer, a Bruker DRX-300WB (300 MHz) spectrometer and a Bruker DMX-500 (500 MHz) spectrometer and are reported in ppm from internal tetramethylsilane. Data are reported as follows: (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constant(s) in Hz; integration; assignment). Proton decoupled <sup>13</sup>C NMR spectra were recorded on a Varian VXR-300 (75 MHz) spectrometer using CDCl<sub>3</sub> (77.0 ppm) or C<sub>6</sub>D<sub>6</sub> (128.0 ppm) as internal standard. High resolution mass spectra were obtained on a JEOL HX110 mass spectrometer in the Columbia University Mass Spectrometry Laboratory.

**Preparation of HgClOAc:** To a suspension of 12.7 g (40.0 mmol) of Hg(OAc)<sub>2</sub> in 10 mL of benzene was added 40.0 mL (40.0 mmol, 1.0 M in H<sub>2</sub>O) of HCl. The mixture was stirred for 1 h, at which point it had become largely, but not completely, homogeneous. The mixture was warmed to 50 °C for 1 h, at which point it had become clear and homogeneous. The mixture was concentrated and dried under vacuum with heating to give a white powder: mp 146-151 °C, lit.<sup>1</sup> mp 145-149 °C.

<sup>(1)</sup> Bowmaker G. A.; Churakov, A. V.; Harris, R. K.; Oh, S.-W. J. Organomet. Chem. 1998, 550, 89-99.

General Procedure, Method A, Table 1: To a mixture of 79.7 mg (0.250 mmol)  $Hg(OAc)_2$  and 0.054 mL (0.750 mmol) propionaldehyde at -78 °C is added dropwise 0.250 mmol of homoallylic alcohol. The reaction mixture is allowed to warm to room temperature over the course of 1-2 hours at which time it becomes homogeneous. After addition of 10 mL of EtOAc and 5 mL of brine, the mixture is stirred for one hour. The organic layer is separated and the aqueous layer is extracted with 3 x 10 mL EtOAc. The combined organic extracts are dried (MgSO<sub>4</sub>), filtered and concentrated. The residue is purified by chromatography on silica gel using CH<sub>2</sub>Cl<sub>2</sub>:hexane.

General Procedure, Method B, Table 1: To a mixture of 73.8 mg (0.250 mmol) HgClOAc and 0.054 mL (0.750 mmol) propionaldehyde at -78 °C is added dropwise 0.250 mmol of homoallylic alcohol. The reaction mixture is allowed to warm to room temperature over the course of 1-2 hours at which time it becomes homogeneous. The mixture is concentrated and the residue is purified by chromatography on silica gel using CH<sub>2</sub>Cl<sub>2</sub>:hexane.

In certain cases (entry 1, Table 1) the homoallylic alcohol freezes at -78 °C. In such cases the initial reaction temperature is raised to -35 °C.

*cis-cis-4-*Chloromercurymethyl-2-ethyl-6-octyl-1,3-dioxane (entry 1, Table 1): <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.47 (t, J = 5.2 Hz, 1H, C(2)-H), 3.93 (m, 1H, C(4)-H), 3.54 (m, 1H, C(6)-H), 2.30 (dd, J = 5 and 12 Hz, 1H, one of C(4)-CH<sub>2</sub>), 2.07 (dd, J = 7 and 12 Hz, 1H, one of C(4)-CH<sub>2</sub>), 1.5-1.7 (m, 4H, C(2)-CH<sub>2</sub>CH<sub>3</sub>, C(5)-H<sub>2</sub>), 1.1-1.4 (m, 14H, C(6)-(CH<sub>2</sub>)<sub>7</sub>), 0.89 (m, 6H, C(2)-CH<sub>2</sub>CH<sub>3</sub>, C(6)-(CH<sub>2</sub>)<sub>7</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  102.6, 76.1, 74.7, 41.0, 38.5, 35.8, 31.9, 29.5, 29.2, 28.1, 25.0, 22.7, 14.1, 8.0; IR (CH<sub>2</sub>Cl<sub>2</sub>) 2923, 2855, 2733, 1466, 1374, 1342, 1307, 1243, 1132, 1089, 1031, 970, 910, 868, 796, 722, 669 cm<sup>-1</sup>; HRMS (FAB+) calcd for C<sub>15</sub>H<sub>28</sub>ClHgO<sub>2</sub>: 473.1445, found 473.1423.

## *cis-cis*-6-Benzyloxymethyl-4-chloromercurymethyl-2ethyl-1,3-dioxane (entry 2, Table 1):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 (m, 5H, C<sub>6</sub>H<sub>5</sub>), 4.57-4.63 (d, J = 16.0 Hz, 2H, CH<sub>2</sub>Ph), 4.53 (t, J = 5.2 Hz, 1H, C(2)-H ), 4.00 (m, 1H, C(4)-H), 3.85 (m, 1H, C(6)-H), 3.57 (dd, J = 6 and 10 Hz, 1H, one of CH<sub>2</sub>OBn), 3.45 (dd, J = 4.7 and 10 Hz, 1H, one of C(4)-CH<sub>2</sub>OBn), 2.30 (dd, J = 5 and 12 Hz, 1H, one of C(4)-CH<sub>2</sub>), 2.07 (dd, J = 6.9 and 12 Hz, 1H, one of C(4)-CH<sub>2</sub>), 1.61-1.73 (m, 3H, one of C(2)-CH<sub>2</sub>CH<sub>3</sub>, C(5)-H<sub>2</sub>), 1.3 (m, 1H, one of C(2)-CH<sub>2</sub>CH<sub>3</sub>), 0.94 (t, J = 7.5 Hz, 3H, C(2)-CH<sub>2</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ 128.4, 127.8, 127.7, 102.5, 75.2, 74.5, 73.5, 72.6, 38.4, 37.5, 28.0, 8.5; IR (CH<sub>2</sub>Cl<sub>2</sub>) 2962, 2931, 2863, 1496, 1466, 1454, 1364, 1344, 1309, 1125, 1029, 972, 910, 866, 737 cm<sup>-1</sup>; HRMS (FAB+) calcd for C<sub>15</sub>H<sub>21</sub>ClHgO<sub>3</sub>K: 521.0484, found 521.0478.

#### *cis-cis*-6-(2-*tert*-Butyldimethylsilyloxy)ethyl-4-chloromercurymethyl-2ethyl-1,3-dioxane (entry 3, Table 1):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.48 (t, J = 5.2 Hz, 1H, C(2)-**H** ), 3.97 (m, 1H, C(4)-**H**), 3.76 (m, 2H, C(6)-C**H**<sub>2</sub>OTBS), 3.68 (m, 1H, C(6)-**H**), 2.30 (dd, J = 5 and 12 Hz, 1H, one of C(4)-C**H**<sub>2</sub>), 2.07 (dd, J = 6.9 and 12 Hz, 1H, one of C(4)-C**H**<sub>2</sub>), 1.58-1.74 (m, 4H, C(6)-C**H**<sub>2</sub>CH<sub>2</sub>OTBS, C(5)-**H**<sub>2</sub>), 1.25 (m, 2H, C(2)-C**H**<sub>2</sub>CH<sub>3</sub>), 0.93 (t, J = 7.5 Hz, 3H, C(2)-CH<sub>2</sub>C**H**<sub>3</sub>), 0.89(s, 9H, OSiC(C**H**<sub>3</sub>)<sub>3</sub>(CH<sub>3</sub>)<sub>2</sub>), 0.05 (s, 6H, OSiC(CH<sub>3</sub>)<sub>3</sub>(C**H**<sub>3</sub>)<sub>2</sub>); <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  102.5, 74.7, 72.5, 58.7, 41.0, 38.8, 38.5, 29.7, 28.0, 25.9, 18.3, 8.6, -5.4; IR (thin film) 2935, 2856, 2738, 1466, 1407, 1384, 1360, 1344, 1254, 1108 cm<sup>-1</sup>; HRMS (FAB+) calcd for C<sub>15</sub>H<sub>31</sub>ClHgO<sub>3</sub>SiK: 559.1035, found 559.1034.

### *cis-cis*-4-Chloromercurymethyl-2-ethyl-6-(2-propenyl)-1,3-dioxane (entry 4, Table 1):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.76-5.86 (m, 1H, C(6)-CH<sub>2</sub>CH=CH<sub>2</sub>), 5.06-5.13 (m, 1H, C(6)-CH<sub>2</sub>CH=CH<sub>2</sub>), 4.49 (t, *J* = 5.2 Hz, 1H, C(2)-H), 3.95 (m, 1H, C(4)-H), 3.62 (m, 1H, C(6)-H), 2.04-2.4 (m, 4H, C(4)-CH<sub>2</sub>,C(6)-CH<sub>2</sub>), 1.57-1.72 (m, 3H, one of C(2)-CH<sub>2</sub>CH<sub>3</sub>, C(5)-CH<sub>2</sub>), 1.21 (m, 1H, one of C(2)-CH<sub>2</sub>CH<sub>3</sub>), 0.93 (t, *J* = 7.5 Hz, 3H, C(2)-CH<sub>2</sub>CH<sub>3</sub>); <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  133.8, 117.4, 102.5, 75.4, 74.6, 40.4, 40.2, 38.4, 28.0, 8.5; IR (thin film) 3068, 2931, 2842, 2725, 1641, 1465, 1416, 1371, 1342, 1303, 1121, 969, 910, 866 cm<sup>-1</sup>; HRMS (FAB+) calcd for C<sub>10</sub>H<sub>16</sub>ClHgO<sub>3</sub>: 401.0506, found 401.0511.

*cis-cis*-4-Chloromercurymethyl-2-ethyl-6-(*E*-1-propenyl)-1,3-dioxane (entry 5, Table 1):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.70-5.78 (m, 1H, C(6)-C**H**=CHCH<sub>3</sub>), 5.51-5.53 (m, 1H, C(6)-CH=CHCH<sub>3</sub>), 4.54 (t, *J* = 5.1 Hz, 1H, C(2)-**H**), 4.02 (m, 2H, C(4)-**H**, C(6)-**H**), 2.31 (dd, *J* = 5 and 12 Hz, 1H, one of C(4)-C**H**<sub>2</sub>), 2.07 (dd, *J* = 7 and 12 Hz, 1H, one of C(4)-C**H**<sub>2</sub>), 1.56-1.72 (m, 5H, C(5)-C**H**<sub>2</sub>, C(6)-CH=CHC**H**<sub>3</sub>), 1.31 (m, 2H, C(2)-C**H**<sub>2</sub>CH<sub>3</sub>), 0.88 (t, *J* = 7.0 Hz, 3H, C(2)-CH<sub>2</sub>C**H**<sub>3</sub>); <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  130.6, 128.0, 102.3, 76.5, 74.5, 40.9, 38.4, 28.1, 17.8, 8.5; IR (thin film) 2926, 2854, 1675, 1457, 1405, 1368, 1332, 1306, 1270, 1249, 1218, 1135, 1026, 969, 927, 912, 865, 798, 735, 668 cm<sup>-1</sup>; HRMS (FAB+) calcd for C<sub>10</sub>H<sub>17</sub>ClHgO<sub>2</sub>: 441.0213, found 441.0222.

# *cis-cis*-4-Chloromercurymethyl-5,5-dimethyl-2-ethyl-6-pentyl-1,3-dioxane (entry 6, Table 1):

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.52 (t, J = 5.2 Hz, 1H, C(2)-H), 3.55 (m, 1H, C(4)-H), 3.10 (m, 1H, C(6)-H), 2.16 (m, 2H, C(4)-CH<sub>2</sub>), 1.27-1.64 (m, 10H, C(2)-CH<sub>2</sub>CH<sub>3</sub>, (CH<sub>2</sub>)<sub>4</sub>), 0.93 (m, 9H, C(2)-CH<sub>2</sub>CH<sub>3</sub>, (CH<sub>2</sub>)<sub>4</sub>CH<sub>3</sub>, C(5)-CH<sub>3</sub>), 0.75 (s, 3H, C(5)-CH<sub>3</sub>); <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  103.3, 85.8, 83.4, 37.4, 32.6, 31.8, 28.8, 28.0, 26.4, 22.6, 21.2, 14.1, 13.0, 8.5; IR (thin film) 2950, 2862, 1465, 1411, 1386, 1342, 1308, 1136, 1097, 1053, 939, 925, 797, 670 cm<sup>-1</sup>; HRMS (FAB+) calcd for (M-1) C<sub>14</sub>H<sub>26</sub>ClHgO<sub>2</sub>: 459.1280, found 459.1289.

**Stereochemical Proofs.** Selective 1D NOESY spectra were recorded for every compound reported here. In every case the illustrated enhancements were observed, establishing the all-*cis* stereochemistry.

